METHOD OF GENERATING PLANNED SPEED PROFILE FOR AUTOMATIC TRAIN DRIVING

Runkai Hua*, Yuming Shi

School of Electronic and Information Engineering, Tongji University, Shanghai 201804, China
*Corresponding Author’s E-mail: 3022877118@qq.com

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

ABSTRACT

The core of the automatic driving system of urban rail train is to generate the planned speed profile. Based on this, this paper studies the generation algorithm of planned speed profile in order to achieve multi-objective optimization of operating indicators such as safety, punctuality, accurate stopping, energy saving and comfort of automatic driving of urban rail trains. In this paper, offline planning is studied and an offline planning algorithm based on genetic algorithm is proposed. At the same time, online planning is also studied to deal with the unexpected situation of train operation. This paper puts forward an online adjustment method based on genetic algorithm and global optimization algorithm. The simulation results show that both the offline planning algorithm and the online adjustment method can satisfy the basic constraint conditions of safe, punctual and accurate stopping of the train operation. These two methods also reduce the operation energy consumption and improve the operation comfort. Therefore, the methods proposed in this paper can achieve multi-objective optimization of the operation index and effectively deal with the unexpected situation of train operation.

KEYWORDS

Urban Rail, Autonomous Driving, Offline Planning, Online Adjustment, Genetic Algorithm

1. INTRODUCTION

Nowadays, more and more intelligent algorithms have been applied to generate the speed planning profile of automatic train driving (Ning et al. 2019). Many results have been achieved in both offline and online planning (Rodríguez et al. 2015).

Aiming at offline planning, Zhang et al. (2021) optimized the train planning speed profile based on immune annealing genetic algorithm, and achieved good optimization results. For online planning, Huang et al. (2022) calculated a policy-based reinforcement learning algorithm using neural network as a train driving controller. However, there are many unsolvable problems in the stability and structure selection of the neural network algorithm.

Based on existing research, this paper proposes an offline planning algorithm for urban rail train autonomous driving systems, which is based on a genetic algorithm and can generate planning speed profiles offline. Additionally, it suggests an online adjustment method which allows for real-time adjustment of the planning speed profile when unexpected changes in speed limits occur ahead of the train’s operation.

This approach aims to achieve multi-objective optimization of train operation safety, punctuality, precise stopping, energy consumption, and comfort metrics.

2. TRAIN MULTI-OBJECTIVE OPTIMIZATION MODEL

2.1 Building Train Motion Equations

Figure 1: Forces acting on the train
The forces directly affecting the operation of a train include traction force F_t, running resistance f (comprising basic resistance f_b and additional resistance f_a), braking force f_b, and gravity Mg. The basic force situation of a train on a slope with a gradient of i is shown in Figure 1.

The dynamic equation for the train can be derived as follows (Tang et al. 2021; Xiao et al. 2021):

$$M \frac{dv}{dt} = F_t - f - f_a$$

Where M is the mass of the train, v is the velocity of the train, and running resistance $f = f_b + f_a$. The traction force F_t is determined based on the traction characteristics of the train, while the braking force f_b is determined based on the braking characteristics of the train. In this study, data for a type B urban rail train are used. Under the condition of no load (AW0), the relationship between the maximum traction force F_{max} and the maximum braking force f_b, and the velocity v of the train is obtained through fitting:

$$F_{\text{max}} = \begin{cases} 203(0 \leq v \leq 51.5 \text{ km/h}) \\ -0.002032v^3 + 0.4928v^2 - 42.12v + 1343 \\ (51.5 \leq v \leq 80 \text{ km/h}) \end{cases}$$

$$f_b = \begin{cases} 166(0 \leq v \leq 77 \text{ km/h}) \\ 0.134v^2 - 25.07v + 1300(77 \leq v \leq 80 \text{ km/h}) \end{cases}$$

2.2 Optimization Criteria

This paper evaluates the rationality of the generated speed profile based on the optimization of urban rail train automatic driving safety, punctuality, precise stopping, energy efficiency, and comfort indicators:

1. **Safety Criteria**: Safety Constraint: The train’s operating speed v on the track must not exceed the track’s speed limit v_m.

2. **Punctuality Criteria**: The punctuality of urban rail trains departing and arriving determines the efficiency of transportation. Generally, the deviation between the actual running time of the train and the planned running time is required to be within a 5% range.

3. **Precise Stopping Criteria**: Since urban rail transit systems are equipped with platform screen doors, the stopping error of urban rail trains is usually required to be within 30cm.

4. **Energy Consumption Criteria**: The energy consumption of urban rail trains during operation generally includes energy consumption generated during engine traction and energy consumption generated by other equipment (such as air conditioning, lighting equipment). This paper only considers the energy consumption during traction and braking of the train. Therefore, the energy consumption evaluation criterion generally uses the work done by traction force to represent it. The energy consumption index E of train operation can be expressed as:

$$E = \int F_t ds$$

Where F_t is the traction force of the train, and s is the distance traveled by the train.

3. PLANNING SPEED PROFILE GENERATION

This article presents an offline planning algorithm based on genetic algorithms for generating speed profiles and introduces an online adjustment method that combines genetic algorithms and global optimization algorithms. This method allows for the real-time generation of adjusted speed profiles when trains encounter unexpected situations during operation, as depicted in Figure 2.
The train speed profile generation process based on genetic algorithms is described in Figure 3.

3.1.1 Initial Population Generation

The train operation process consists of four main operating conditions: traction, cruising, coasting, and braking. The planned speed profile for a single speed-limited section is shown in Figure 4.

As shown in Figure 3, the train starts from the beginning and initially operates in the traction condition, accelerating until it reaches the cruising speed v_c. Then, it switches to the cruising condition to maintain a constant speed. After reaching point x_p, it transitions to the coasting condition, where the train is primarily influenced by resistance. Finally, at point x_c, it switches to the braking condition until it comes to a stop. Through analysis, it is possible to determine the cruising speed, traction level, braking level, and the position of the transition from cruising to coasting for each speed-limited section. This information allows for the generation of a specific speed profile. For a route with multiple speed-limited sections, the i-th individual u_i in the algorithm's population is represented as $(v_{p,i}, l_{p,i}, p_{i})$. In the equation, v_p is the cruising speed within the speed-limited section, l_p is the traction level, l_b is the braking level, and p_i is the position at which the transition from cruising to coasting condition.

3.1.2 Planned Speed Profile for Each Individual Generation

For each individual in the population, the corresponding planned speed profile is calculated separately. Taking the i-th individual u_i as an example, the calculation process mainly includes two steps: point-by-point calculation to get the braking profile and point-by-point calculation to get the shortest time planning profile.

1. Point-by-point calculation to get the braking profile

The total length L of the line in the operating interval is discretely divided into N points in equal distance, and in units of Δt for each calculation step. Starting from the end point of the interval, the whole line is traversed and calculated point by point through brake level l_b in reverse until the speed reaches the cruising speed v_c of the interval. The speed limit profile of the interval is obtained by connecting with the cruising speed profile. It can be expressed as $(v_{l_b,1}, v_{l_b,2}, v_{l_b,3} ... v_{l_b,N})$, wherein, each point on the profile contains three kinds of parameters: position s_i, speed v_i, brake level $l_{i,b}$, which can be expressed as $v_{l_b} = (s_{i_b}, v_{i_b}, l_{i,b})$. The speed limit profile is shown in Figure 5.

2. Point-by-point calculation to get the shortest time planning profile

After the speed limiting profile is generated, it traverses the whole line from the beginning of the interval with each calculated step Δn as the unit. Through the traction stage condition l_t, the train accelerates to the interval cruising speed v_c. Then, it keeps the cruising speed unchanged to the position where the cruising changes to coasting condition p_c, and then keeps coasting condition. Finally, the train changes to the braking condition until the speed reaches the speed limiting profile. The braking stage is obtained from the speed limit profile.

After calculating to the end point, the total time $T_{c,i}$ is obtained. At the same time, and the shortest time planning speed profile is generated, which can be expressed as $(V_l, V_1, V_2 ... V_l)$. At the n-th point $V_{l,n}$ on the profile, it contains position $s_{n, i}$, velocity $v_{n, i}$, acceleration $a_{n, i}$, and total running time $t_{n, i}$ from the starting point to the n-th point. It can be expressed as $s_{n, i}, v_{n, i}, a_{n, i}, t_{n, i}$.

3.1.3 Calculating Individual Fitness

The quality of each individual's speed profile planning is mainly reflected through its corresponding fitness. The magnitude of fitness is determined by the fitness function. This paper primarily considers optimizing the safety, punctuality, precise stopping, energy consumption, and comfort indicators of train operation. Additionally, a penalty function f_{penalty} is introduced to improve algorithm iteration efficiency. Hence, the fitness function for the i-th individual in the population is shown as Equation (6):

$$K_i = \lambda_1 v_{c,i} + \lambda_2 a_{c,i} + \lambda_3 b_{c,i} + \lambda_4 v_{c,i} + \lambda_5 v_{c,i} - f_{\text{penalty}}$$

Where $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the weights of each performance indicator, satisfying $\lambda_1 + \lambda_2 + \lambda_3 = 1$. $v_{c,i}$, $a_{c,i}$, $b_{c,i}$ correspond to the punctuality, precise stopping, energy consumption, and comfort indicators, respectively. To facilitate the comparison of indicators with different magnitudes, normalization is performed on each indicator as follows:

$$k_{v,i} = \frac{T_{v,i} - T_{0}}{T_{0}}$$

$$k_{a,i} = \frac{E_{max} - E_{i}}{E_{max}}$$

$$k_{b,i} = \frac{C_{max} - C_{i, i}}{C_{max}}$$

Where $T_{v,i}$ is the actual running time for the i-th individual, T_{0} is the planned running time from the timetable, S_{i} is the actual stopping position for the i-th individual, S_{0} is the target stopping position, E_{i} is the energy consumption indicator for the i-th individual, E_{max}, C_{max} are the highest and lowest energy consumption indicators in the population, C_{i} is the comfort indicator for the i-th individual, and C_{max}, C_{min} are the highest and lowest comfort indicators in the population.

Regarding the penalty function f_{penalty}, for individuals whose speed exceeds the track speed limit, f_{penalty} is set to $\rightarrow \infty$ to淘汰 such individuals. For individuals with a deviation between actual running time and planned running time greater than 5%, or stopping errors greater than 30cm, the penalty function can be expressed as:

$$f_{\text{penalty}} = \lambda \times (Error_{t} + Error_{p})$$

Where λ are penalty coefficients, $Error_{t}$ is the percentage deviation between actual running time and planned running time, and $Error_{p}$ is the actual stopping error value. When the number of iterations of the population has reached the target number of iterations, the planned speed profile of the individual with the highest fitness is output, which can be expressed as $(G_1, G_2 ... G_N)$. The n-th point G_n can be expressed as $(s_{n,i}, v_{n,i}, a_{n,i}, t_{n,i})$.

3.1.4 Population Iteration

1. Individual selection

After obtaining the fitness of each individual, the core idea of selecting surviving individuals based on the roulette wheel selection method is to choose individuals proportionally according to their fitness. Individuals with higher fitness have a greater probability of being selected, while those with lower fitness still have some chance of being chosen, thus maintaining the diversity of the population.
2. Genetic recombination

To perform crossover on the surviving individuals, firstly, two surviving individuals need to be randomly selected as parents, denoted as parent1 and parent2. Then, the genes at corresponding positions of the individuals are subject to recombination. Recombination aims for the offspring to inherit characteristics from the parents while not being identical. The crossover formula is as follows:

$$\text{son} = \text{parent1} + \eta (\text{parent2} - \text{parent1})$$

(12)

Where son represents the newly generated individual through recombination, \(\eta\) is the crossover ratio factor. The surviving individuals along with the newly generated individuals constitute the population of the new generation.

3. Genetic mutation

To prevent premature convergence, it's necessary to introduce mutation to the individuals within the population of the new generation. The mutation principle involves determining the position of the gene within its upper and lower bounds, then converting it into a probability within the range [0,1]. Let \(p\) denote this probability. The mutation calculation method is given as:

$$q' = \begin{cases} q + U \alpha (1 - p), & r \geq p_m \\ q + U \alpha p, & r < p_m \end{cases}$$

(13)

Where \(r\) is a randomly generated number between 0 and 1, \(p_m\) is the gene mutation probability. \(q'\) represents the original gene value, \(U\) denotes this probability. The mutation calculation method ensures that the mutated gene stays within its defined bounds while introducing variability into the population.

3.2 Online Adjustment Method

When a train encounters unexpected situations during its operation, this article proposes an online adjustment method for planning speed profiles. This method combines genetic algorithms with a real-time computation algorithm. The method's principles are illustrated in Figure 6.

As illustrated, the computation time for a genetic algorithm to plan a route and converge to a result is defined as an emergency time window. The moment \(t_0\) is the time when the speed limit changes temporarily due to an emergency situation, \(t_1\) is the time after the emergency time window, and \(t_e\) is the time when the train reaches the end of the section. Firstly, a planned speed profile is generated in real-time at moment \(t_0\) using a global optimization algorithm, controlling the train to follow the planned speed profile during the emergency time window \((t_0\rightarrow t_1)\). Simultaneously, a planned speed profile is generated within the emergency time window \((t_e\rightarrow t_1)\) using genetic algorithm. Finally, the train is controlled to follow this planned speed profile from the end of the emergency time window to the end of the section \((t_e\rightarrow t_e)\).

3.2.1 Global Optimization Algorithm

This paper proposes a real-time global optimization algorithm that optimizes the comfort and energy consumption of train operations while ensuring the punctuality and precise stopping of trains. Firstly, the algorithm initially generates a planned speed profile for the shortest train travel time. Based on this, it adjusts the traction and braking levels. Then, according to the planned travel time in the train’s schedule, it uses a linear approximation method to adjust the highest cruising speed within the section. Finally, it generates a planned speed profile that meets the constraint conditions, which can be denoted as \((D1, D2, D3, \ldots DN)\).

3.3 Online Adjustment Process

When the train encounters a sudden change in speed limits ahead during its operation, assuming the total length of the segment is \(L\) and the planned travel time according to the timetable is \(T0\). Discretizing the remaining length of the operating section \((L-s_0)\) into \(N\) equidistant points, the planned speed profile based on a global optimization algorithm can be represented as \((D1, D2, D3, \ldots DN)\).

Assuming genetic algorithm is used for route planning, and the time it takes to obtain convergence results for the entire route is denoted as the emergency time window \(T_{window}\). Begin iterating from \(n=1\) to traverse each point on the speed profile generated by the global optimization algorithm. Define the first point discovered where the total time exceeds \((T_{window} + t_e)\) as the endpoint of the emergency time window, denoted as \(w\). The train's status at the endpoint are as follows:

$$D_w = (s_w, v_w, a_w, t_w)$$

(14)

To control the train's movement from the starting point \(s_0\) to the endpoint of the emergency time window \(s_w\), the speed profile generated by the global optimization algorithm is used. Simultaneously, using \(D_w\) as the starting point for offline calculations, assuming the remaining length of the operating section \((L-s_0)\) is discretized into \(Q\) equidistant points, and employing a genetic algorithm to compute the offline planned speed profile within the time interval \((t_e\rightarrow t_e)\). It can be represented as \((G_1, G_2, \ldots, G_n)\). Each point on the profile, \(G_n\), contains four types of parameter: position \(s_n\), speed \(v_n\), acceleration \(a_n\), and the total time taken from the starting point to the \(n\)-th point \(G_n\). \(G_n = (s_n, v_n, a_n, t_n)\). Finally, control the train’s movement following the offline planned speed profile after the endpoint of the emergency time window.

![Figure 6: Principle of planning speed profile online adjustment](Image)
The use of sections to divide the text of the paper is optional and left as a decision for the author. Where the author wishes to divide the paper into sections the formatting shown in Table 2 should be used.

Assuming that when the train reaches 300 meters, it receives a signal indicating a temporary speed limit change to 40 km/h in the segment between 673 to 900 meters. Firstly, generate a real-time planned speed profile based on the global optimization algorithm. Then, use genetic algorithm to compute the speed profile within the emergency time window. Speed profile planned by global optimization algorithm and online adjustment are respectively shown in Figure 8 and 9.

Train performance indicators are compared as shown in Table 2, energy consumption and comfort are calculated using formulas (2) and (3) respectively. The offline planned speed profiles achieved better multi-objective optimization results, validating the effectiveness of the offline planning algorithm proposed in this paper. In the event of unexpected situations, both the global optimization algorithm-planned speed profiles and the online-adjusted speed profiles meet the constraints for train operation, including safety, punctuality, and precision parking. However, the global optimization algorithm-planned speed profiles exhibit poorer optimization results in terms of energy consumption and comfort. The online-adjusted speed profiles, on the other hand, demonstrate improved optimization results for energy consumption and comfort indicators, confirming the effectiveness of the online adjustment method proposed in this paper.

Table 1: Simulation parameter table

<table>
<thead>
<tr>
<th>Parameter Category</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between stations /m</td>
<td>1287</td>
</tr>
<tr>
<td>Time planned in the schedule /s</td>
<td>111</td>
</tr>
<tr>
<td>Speed limit 0-83m/(km/h)</td>
<td>60</td>
</tr>
<tr>
<td>Speed limit 83-572m/(km/h)</td>
<td>80</td>
</tr>
<tr>
<td>Speed limit 572m-1287/(km/h)</td>
<td>60</td>
</tr>
</tbody>
</table>

The time the algorithm takes to get the speed profile
- Genetic algorithm/s: 1.5
- Global optimization algorithm/s: 0.0002

Table 2: Simulation operation index comparison

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Operation time /s</th>
<th>Parking Position /m</th>
<th>Energy Consumption /kWh</th>
<th>Comfort /(m/s³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic algorithm</td>
<td>110.54</td>
<td>1286.70</td>
<td>13.65</td>
<td>52.86</td>
</tr>
<tr>
<td>Global optimization algorithm</td>
<td>110.86</td>
<td>1286.82</td>
<td>14.65</td>
<td>86.14</td>
</tr>
<tr>
<td>Online adjustment</td>
<td>110.78</td>
<td>1286.90</td>
<td>13.86</td>
<td>65.96</td>
</tr>
</tbody>
</table>

4. SIMULATION VERIFICATION

4.1 Simulation Parameters

Select a specific operating section of a real railway route, and the corresponding simulation parameters are as shown in Table 1:

4.2 Simulation Results
5. CONCLUSION

This article proposes an offline planning algorithm based on genetic algorithms to generate planned speed profiles offline. Subsequently, it introduces an online adjustment method based on genetic algorithms and global optimization algorithms. This method allows for real-time adjustment of the planned speed profile when the train encounters changes in speed limits ahead due to unforeseen circumstances. It achieves multi-objective optimization for train operation.

However, the method proposed in this article uses a single mass point model to model the train. For longer vehicles such as heavy freight trains that require consideration of multi-mass point models. The challenge of real-time adjustment of planned speed profiles is identified as a future research direction. In addition, how to further improve the iterative efficiency of genetic algorithm and reduce the emergency time window as much as possible is also the next work plan.

REFERENCES

